Мы используем файлы cookie.
Продолжая использовать сайт, вы даете свое согласие на работу с этими файлами.

Синильная кислота

Синильная кислота
Hydrogen-cyanide-2D.png
Синильная кислота
Синильная кислота
Общие
Традиционные названия циановодород, синильная кислота
Хим. формула HCN
Физические свойства
Состояние бесцветный газ или бесцветная легколетучая жидкость
Молярная масса 27,0253 г/моль
Плотность 0,687 г/см³
Динамическая вязкость 0,201 Па·с
Энергия ионизации 13,6 ± 0,1 эВ
Термические свойства
Т. плав. −13,4 °C
Т. кип. 26,7 °C
Т. всп. −17,8 °C
Пр. взрв. 5,6 ± 0,1 об.%
Мол. теплоёмк. (средняя для газа и жидкости) 1,97 Дж/(моль·К)
Давление пара 630 ± 1 мм рт.ст.
Химические свойства
pKa 9,21
Растворимость в воде в любых пропорциях
Оптические свойства
Показатель преломления 1,2675
Структура
Дипольный момент 2,98 Д
Классификация
Рег. номер CAS 74-90-8
PubChem
Рег. номер EINECS 200-821-6
SMILES
InChI
Рег. номер EC 200-821-6
RTECS MW6825000
ChEBI 18407
Номер ООН 1051
ChemSpider
Безопасность
ЛД50 3,7 мг/кг (мыши, перорально)
Токсичность

Чрезвычайно токсична, СДЯВ


Hazard TT.svg Hazard FF.svg Hazard X.svg
NFPA 704
NFPA 704.svg
Приводятся данные для стандартных условий (25 °C, 100 кПа), если не указано иного.

Сини́льная (циа́нистоводородная) кислота́, цианистый водород, HCN — бесцветная, очень летучая, легкоподвижная ядовитая жидкость, имеющая характерный запах горького миндаля.

Синильная кислота содержится в некоторых растениях, коксовом газе, табачном дыме, выделяется при термическом разложении нейлона, полиуретанов. Смешивается во всех соотношениях с водой, этанолом, диэтиловым эфиром.

Свойства

Химические

Молекула HCN сильно полярна (μ = 0,96⋅10−29 Кл·м).

Безводный цианистый водород является сильно ионизирующим растворителем, растворённые в нём электролиты хорошо диссоциируют на ионы. Его относительная диэлектрическая проницаемость при 25 °C равна 107 (выше, чем у воды). Это обусловлено линейной ассоциацией полярных молекул HCN за счёт образования водородных связей.

Очень слабая одноосновная кислота К = 1,32⋅10−9 (18 °C). Образует с металлами соли — цианиды. Взаимодействует с оксидами и гидроксидами щелочных и щёлочноземельных металлов.

Пары синильной кислоты горят на воздухе фиолетовым пламенем с образованием Н2О, СО и N2. В смеси кислорода со фтором горит с выделением большого количества тепла:

кДж.

Синильная кислота широко применяется в органическом синтезе. Она реагирует с карбонильными соединениями, образуя циангидрины:

С хлором, бромом и иодом прямо образует циангалогениды:

С галогеналканами — нитрилы (реакция Кольбе):

С алкенами и алкинами реагирует, присоединяясь к кратным связям:

Легко полимеризуется в присутствии основания (часто со взрывом). Образует аддукты, например, HCN-CuCl.

Разлагается водой

Физиологические

Синильная кислота является веществом, вызывающим кислородное голодание тканевого типа. При этом наблюдается высокое содержание кислорода как в артериальной, так и в венозной крови и уменьшение таким образом артерио-венозной разницы, резкое понижение потребления кислорода тканями с уменьшением образования в них углекислоты. Синильная кислота и её соли, растворённые в крови, достигают тканей, где вступают во взаимодействие с трёхвалентной формой железа цитохромоксидазы. Соединившись с цианидом, цитохромоксидаза теряет способность переносить электроны на молекулярный кислород. Вследствие выхода из строя конечного звена окисления блокируется вся дыхательная цепь и развивается тканевая гипоксия. Кислород доставляется к тканям в достаточном количестве с артериальной кровью, но ими не усваивается и переходит в неизмененном виде в венозное русло. Одновременно нарушаются процессы образования макроэргов, необходимых для нормальной деятельности различных органов и систем. Активизируется гликолиз, то есть обмен с аэробного перестраивается на анаэробный. Также подавляется активность и других ферментов — каталазы, пероксидазы, лактатдегидрогеназы.

Действие на нервную систему

В результате тканевой гипоксии, развивающейся под влиянием синильной кислоты, в первую очередь нарушаются функции центральной нервной системы.

Действие на дыхательную систему

В результате острого отравления наблюдается резко выраженное увеличение частоты и глубины дыхания. Развивающуюся одышку следует рассматривать как компенсаторную реакцию организма на гипоксию. Стимулирующее действие синильной кислоты на дыхание обусловлено возбуждением хеморецепторов каротидного синуса и непосредственным действием яда на клетки дыхательного центра. Первоначальное возбуждение дыхания по мере развития интоксикации сменяется его угнетением вплоть до полной остановки. Причинами этих нарушений являются тканевая гипоксия и истощение энергетических ресурсов в клетках каротидного синуса и в центрах продолговатого мозга.

Действие на сердечно-сосудистую систему

Проникая в кровь, она снижает способность клеток воспринимать кислород из притекающей крови. А так как нервные клетки больше всех остальных нуждаются в кислороде, они первыми страдают от действия синильной кислоты. В начальном периоде интоксикации наблюдается замедление сердечного ритма. Повышение артериального давления и увеличение минутного объёма сердца происходят за счёт возбуждения синильной кислотой хеморецепторов каротидного синуса и клеток сосудодвигательного центра, с одной стороны, выброса катехоламинов из надпочечников и вследствие этого спазма сосудов — с другой. По мере развития отравления артериальное давление падает, пульс учащается, развивается острая сердечно-сосудистая недостаточность и наступает остановка сердца.

Изменения в системе крови

Содержание в крови эритроцитов увеличивается, что находит объяснение в рефлекторном сокращении селезенки в ответ на развивающуюся гипоксию. Цвет венозной крови становится ярко-алым за счёт избыточного содержания кислорода, не поглощённого тканями. Артерио-венозная разница по кислороду резко уменьшается. При угнетении тканевого дыхания изменяется как газовый, так и биохимический состав крови. Содержание CO2 в крови снижается вследствие меньшего образования и усиленного его выделения при гипервентиляции. Это приводит в начале развития интоксикации к газовому алкалозу, который меняется метаболическим ацидозом, что является следствием активации процессов гликолиза. В крови накапливаются недоокисленные продукты обмена. Увеличивается содержание молочной кислоты, нарастает содержание ацетоновых тел, отмечается гипергликемия. Нарушением окислительно-восстановительных процессов в тканях объясняется развитие гипотермии. Таким образом, синильная кислота и её соли вызывают явления тканевой гипоксии и связанные с ней нарушения дыхания, кровообращения, обмена веществ, функции центральной нервной системы, выраженность которых зависит от тяжести интоксикации.

Биологическая роль

Показано, что нейроны способны вырабатывать эндогенную синильную кислоту (цианистый водород, HCN) после их активации эндогенными или экзогенными опиоидами и что образование нейронами эндогенной синильной кислоты повышает активность NMDA-рецепторов и, таким образом, может играть важную роль в передаче сигнала между нейронами (нейротрансмиссии). Более того, образование эндогенного цианида оказалось необходимым для проявления в полном объёме анальгетического действия эндогенных и экзогенных опиоидов, а вещества, снижающие образование свободной HCN, оказались способны уменьшать (но не полностью устранять) анальгетическое действие эндогенных и экзогенных опиоидов. Выдвинуто предположение, что эндогенная синильная кислота может являться нейромодулятором.

Известно также, что стимуляция мускариновых холинорецепторов клеток феохромоцитомы в культуре повышает образование ими эндогенной синильной кислоты, однако стимуляция мускариновых холинорецепторов ЦНС в живом организме крысы приводит, наоборот, к снижению образования эндогенной синильной кислоты.

Также показано, что синильная кислота выделяется лейкоцитами в процессе фагоцитоза и способна убивать патогенные микроорганизмы.

Возможно, что вазодилатация, вызываемая нитропруссидом натрия, связана не только с образованием окиси азота (механизм, общий для действия всех сосудорасширяющих препаратов группы нитратов, таких, как нитроглицерин, нитросорбид), но и с образованием цианида. Возможно, что эндогенный цианид и образующийся при его обезвреживании в организме тиоцианат играют роль в регуляции функций сердечно-сосудистой системы, в обеспечении вазодилатации, и являются одними из эндогенных антигипертензивных веществ.

Получение

В настоящий момент существуют три наиболее распространённых метода получения синильной кислоты в промышленных масштабах:

  • Метод BMA (Blausäure aus Methan und Ammoniak), запатентованный фирмой Degussa: прямой синтез из аммиака и метана в присутствии платинового катализатора при высокой температуре:

(в присутствии влаги)

Эта реакция иногда является основой случайных отравлений, потому что кислота превращает нелетучую цианидную соль в газообразный циановодород.

  • Реакцией монооксида углерода с аммиаком:

Применение

В химическом производстве

Является сырьём для получения акрилонитрила, метилметакрилата, адипонитрила и других соединений. Синильная кислота и большое число её производных используются при извлечении благородных металлов из руд, при гальванопластическом золочении и серебрении, в производстве ароматических веществ, химических волокон, пластмасс, каучука, органического стекла, стимуляторов роста растений, гербицидов.

Как отравляющее веществo

Впервые в роли боевого отравляющего вещества синильная кислота была использована французской армией 1 июля 1916 года на реке Сомме. Однако из-за отсутствия кумулятивных свойств и малой стойкости на местности последующее использование синильной кислоты в этом качестве прекратилось.

Синильная кислота являлась основной составной частью препарата «Циклон Б», который был наиболее популярным в Европе во время Второй мировой войны инсектицидом, а также использовался нацистами для убийства людей в концентрационных лагерях. В некоторых штатах США синильная кислота использовалась в газовых камерах в качестве отравляющего вещества при исполнении приговоров смертной казни, в последний раз это было сделано в Аризоне в 1999 году. Смерть, как правило, наступает в течение 5—15 минут.

Соли

Основная статья: Цианиды

Соли синильной кислоты называются цианидами. Все цианиды, как и сама кислота, очень ядовиты. Цианиды подвержены сильному гидролизу. При хранении водных растворов цианидов при доступе диоксида углерода они разлагаются:

Ион CN (изоэлектронный молекуле СО) входит как лиганд в большое число комплексных соединений d-элементов. Комплексные цианиды в растворах очень стабильны.

Цианиды тяжёлых металлов термически неустойчивы; в воде, кроме цианида ртути (Hg(CN)2), нерастворимы. При окислении цианиды образуют соли — цианаты:

Многие металлы при действии избытка цианида калия или цианида натрия дают комплексные соединения, что используется, например, для извлечения золота и серебра из руд:

Токсичность и биологические свойства

Skull and Crossbones.svg

Синильная кислота — сильнейший яд общетоксического действия, блокирует клеточную цитохромоксидазу, в результате чего возникает выраженная тканевая гипоксия. Половинные летальные дозы (LD50) и концентрации для синильной кислоты:

  • Мыши:
    • перорально (ORL-MUS LD50) — 3,7 мг/кг;
    • при вдыхании (IHL-MUS LC50) — 323 м.д.;
    • внутривенно (IVN-MUS LD50) — 1 мг/кг.
  • Кролики, внутривенно (IVN-RBT LD50) < 1 мг/кг;
  • Человек, минимальная опубликованная смертельная доза перорально (ORL-MAN LDLo) < 1 мг/кг.

При вдыхании синильной кислоты в небольших концентрациях наблюдается царапанье в горле, горький вкус во рту, головная боль, тошнота, рвота, боли за грудиной. При нарастании интоксикации уменьшается частота пульса, усиливается одышка, развиваются судороги, наступает потеря сознания. При этом цианоз отсутствует (содержание кислорода в крови достаточное, нарушена его утилизация в тканях).

При вдыхании синильной кислоты в высоких концентрациях или при попадании её внутрь появляются клонико-тонические судороги и почти мгновенная потеря сознания вследствие паралича дыхательного центра. Смерть может наступить в течение нескольких минут.

В организме человека метаболитом синильной кислоты является роданид (тиоцианат) SCN, образующийся при её взаимодействии с серой под действием фермента роданазы.

Антидоты синильной кислоты

Для лечения отравлений синильной кислотой известно несколько антидотов, которые могут быть разделены на две группы. Лечебное действие одной группы антидотов основано на их взаимодействии с синильной кислотой с образованием нетоксичных продуктов. К таким препаратам относятся, например, коллоидная сера и различные политионаты, переводящие синильную кислоту в малотоксичную роданистоводородную кислоту, а также альдегиды и кетоны (глюкоза, диоксиацетон и др.), которые химически связывают синильную кислоту с образованием циангидринов. К другой группе антидотов относятся препараты, вызывающие образование в крови метгемоглобина: синильная кислота связывается метгемоглобином и не доходит до цитохромоксидазы. В качестве метгемоглобинообразователей применяют метиленовую синь, а также соли и эфиры азотистой кислоты.

Сравнительная оценка антидотных средств: метиленовая синь предохраняет от двух смертельных доз, тиосульфат натрия и тетратиосульфат натрия — от трёх доз, нитрит натрия и этилнитрит — от четырёх доз, метиленовая синь совместно с тетратиосульфатом — от шести доз, амилнитрит совместно с тиосульфатом— от десяти доз, азотистокислый натрий совместно с тиосульфатом — от двадцати смертельных доз синильной кислоты.

См. также


Новое сообщение